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Figure 10.- Variation of KF/Koo with h. Uniform shear
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Figure 11.- Shear stress on longitudinal edge. Uni-

form shear stress and zero lateral displacement.
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For the third shear problem, in which tangential displacement of the longitudinal
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value only for h less than 2. For small h, the trend is similar to that of the other shear

problems, though somewhat more pronounced.
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STRESSES AT THE TIP OF A LONGITUDINAL CRACK IN A PLATE STRIP*

By W. B. Fichter

Langley Research Center

SUMMARY

The stress field near the tip of a central longitudinal crack in a plate strip is

investigated. Several plane elastostatic problems involving opening and in-plane shearing

of the crack, as well as one plate bending problem, are analyzed. Stress intensity fac-

tors are obtained as a function of the ratio of strip width to crack length. In addition, for

several problems some plots of the stresses on the longitudinal edges are presented to

illustrate some additional effects of the proximity of the crack to the boundary. Finite

strip width is shown to exert a strong influence on stress intensity factors in certain

ranges of the ratio of strip width to crack length. Results for the fixed-edge plane prob-

lems and the plate bending problem are only slightly influenced by changes .in Poisson's

ratio. The results should be useful in the design of fracture test specimens and in the

analysis of fracture test data.

INTRODUCTION

In the aerospace industry there is concern over the deleterious effects of cracks

in metal structures. Many in-service failures of aircraft components have been traced

to fatigue cracks. In addition, the use of some high strength alloys has been compro-

mised by crack sensitivity. Such considerations have motivated extensive development

of the technology of predicting fracture of materials in the presence of cracks. An

important aspect of this technology is the determination of stress fields near cracks

and the study of the influence of loadings and boundary conditions on these stress fields.

It is widely known that the linear theory of elasticity predicts a square root singu-

larity in stress at the tip of a crack in a plate when the plate is subjected to loads which

cause relative displacement of the opposing crack faces. (See, for example, refs. 1 to 3.)

Although this singularity in stress is physically unrealistic, the strength of the stress

singularity or some numerical modification of it, usually referred to as the stress

*The information presented herein is based in part upon a thesis offered in partial

fulfillment of the requirements for the degree of Master of Science, Virginia Polytechnic

Institute, Blacksburg, Virginia, June 1966.



intensity factor, furnishes a means by which a few judiciously designed experiments

might be utilized to predict the crack sensitivity of a larger class of configurations. As

a result, requirements for costly and time-consuming testing programs might be

reduced.

Analytical information on stress fields around cracks in doubly infinite plates

abounds in the technical literature. (See, for example, refs. 1 to 3, where numerous addi-

tional references are cited.) On the other hand, relatively few analyses have been made

of cracks in finite plates. More analytical information on the effects of finite in-plane

plate dimensions and the range over which these effects are important would be useful in

the design of practical structural components.

Almost all analyses which have been performed on finite plates have been confined

to cases in which the finite-plate dimension is parallel to the crack direction. The pres-

ent report contains analyses of an infinitely long plate strip of width 2ah containing a

central longitudinal crack of length 2a; that is, the finite-plate dimension is perpendic-

ular to the crack direction. Several plane elastostatic problems and one bending problem

are treated. Stress intensity factors are determined as a function of h, the ratio of

strip width to crack length, to facilitate an assessment of the effects of finite strip width.

The results are normalized with respect to those for a doubly infinite plate under the

same loading conditions. For plane problems involving geometrical restraint of the

longitudinal edges of the strip, some illustrative plots of stress distributions on the

edges are presented.

In all the problems analyzed herein, the external loading has been applied to the

crack surfaces in order to make use of well-developed transform methods. However,

with the exception of the problems involving concentrated forces, these problems can be

easily extended by superposition to problems involving stress-free crack surfaces and

uniform stresses or displacements on the longitudinal edges of the strip. The stress

intensity factors are unaltered by such extensions.

SYMBOLS

A,B,C,D

Am,An

a

5

unknown coefficients in general solution of transformed biharmonic equation

coefficients in series

half length of crack

plate bending stiffness



E Young's modulus of elasticity

G

g(x)

h

K

k

Lm_n

M

unknown function in dual integral equations

modulus of shear rigidity

function in dual integral equations

function of applied load in dual integral equations

nondimensional strip width

stress intensity factor

arbitrary real positive number in solution of dual integral equations

coefficients in algebraic equations

nondimensional applied bending moment

Mx,My,Mxy

m_n

P

Pm

Qx,QY

t

U_V

W

x,y

F

nondimensional bending and twisting moments

integers

applied concentrated force

normalized series coefficients

nondimensional shear forces

plate thickness

nondimensional in-plane displacements

nondimensional lateral displacement

nondimensional rectangular Cartesian coordinates

gamma function



l+p.

elastic strains

parameter in dual integral equations

Poisson's ratio

transform variable

(y nondimensional applied stress

nondimensional stresses

nondimensional applied shear stress

V4

Subscripts:

nondimensional Airy stress function

biharmonic operator, -_/\_ +

F refers to strip

oO refers to doubly infinite plate

Primes denote dimensional quantities. Bars denote transformed quantities.

ANALYSIS

The configuration is an infinitely long

plate strip of width 2ah with a central

longitudinal crack of length 2a. (See

fig. 1.) The problems are divided into

categories in accordance with the types of

loading applied to the crack faces. In the

first group of problems, the crack is being

either opened or sheared by uniform loads.

f
ah

ah

Figure 1.- Plate strip and coordinate system.
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The second group involves the opening of the crack due to the application of concentrated

loads to the crack faces.

The plane problems and the bending problem are analyzed similarly. All the

analyses are based on a method presented by Sneddon in reference 4 for determining the

appropriate pair of dual integral equations to be solved for the Fourier transform of the

Airy stress function. In the bending problem, the Fourier transform of the lateral dis-

placement w is sought. After the dual integral equations have been obtained, a method

given by Tranter in reference 5 is employed to solve the dual integral equations and

eventually to obtain the stresses and displacements in the form of infinite series. Here,

however, the primary goal is to obtain the stress intensity factors as functions of the

ratio of strip width to crack length.
I

For the plane problems the equations of plane strain are assumed to govern, it

being understood that the plane strain solutions can be converted to plane stress solu-

tions by the appropriate substitutions for Young's modulus E and Poisson's ratio /_.

(See, for example, ref. 6.)

Under the plane strain assumptions, the following system of equations governs the

plane problems:

where

V4_'(x',y ') = 0 (1)

uX = Oy,2

,
_Y= Ox,2

, 02_ '

= ax, 

(2)

with the stress-strain relations

ex= _ - V-

,

(3)



and the strain-displacement relations

, 8U _
EX=-- ax'

, av' au'

_xy=ax-T*_

The quantities contained in equations (1) to (4) are made nondimensional by the

following relationships:

_' = Ea2_

(rx: E(;x

_: E_y

_y-- E_xy
v .E XE x

t

ey = ey
t

7xy = 7xy

U v = au

V t = av

X' =ax

y'=ay

Equations (1) to (4) then assume the following form:

V4@(x,y) = 0

where •

= _x 2

=_ a24,
_xy ax ay

(4)

(5)

(6)

(7)



with

_x = ax- U_y

_y: % - _x

and

811
EX=m _x

In terms of the nondimensional coordinates, the strip is of width 2h and contains a

crack of length 2.

The fact that the plate is infinite in length strongly suggests the use of infinite

integral transforms.

for example, ref. 4)

and inversely

equation (6) becomes

(8)

(9)

With the complete Fourier transform of a function defined by (see,

_oOi(_,y) = fix,y) e-i_Xdx (10)
--00

1 _oo f(_,Y) ei_Xd_ ill)f(x,y) = _ _

- _ _i_,Y) = 0

it being assumed that stresses and displacements vanish as

tion to equation (12) may be written as

IX I _ co,

(12)

The general solu-

_(_,y) = (A + By)e -lily + (C + Dy)e [_Iy (13)

where A, B, C, and D are functions of _ to be determined by application of the

boundary conditions. In terms of _b, the transformed stresses and displacements are



and

= :._\dy 2 + _:2

(14)

(15)

Because of similarities in the various analyses, two example problems are pre-

sented in detail in the text, the remaining problems being discussed only briefly.

Detailed analyses of the remaining problems are relegated to appendixes A and B.

The first example problem concerns the opening of the crack by uniform pressure,

the edges of the strip being taken to be free of stress. After this detailed treatment,

brief discussion is given of other problems which can be analyzed in a similar manner

such as uniform normal and shear stress distributions and uniform bending-moment dis-

tribution on the crack faces. Detailed analyses of these other problems are given in

appendix A.

The second example problem concerns the opening of the crack by symmetrically

applied concentrated forces, the edges of the strip being stress free. This problem is

followed by brief discussions of other concentrated force problems, detailed analyses of

which are given in appendix B.

In the analyses, certain assumptions are made with regard to the permissibility of

interchanging the order of summation and integration in some infinite series. These

assumptions appear to be justified by the final results.

Crack-Opening Mode - Uniform Pressure

Free longitudinal edges.- In the first problem the edges of the strip are free of

external load, and the crack is being opened by a uniform pressure Ecr, where a is a

nondimensional measure of the applied pressure. Because of symmetry, only the upper

half of the strip (0 _-<y =<h) needs to be considered. The boundary conditions in the

dimensionless system are

8



ay(X,h) = 0

"xy(X,h) --0

'_xy(x,O).- 0

_y(x,o) = -_

v(x,O)= o

The transformed boundary conditions are

_y(:,h)--o

bxy(_,h) = 0

_(_,o) =o

(16)

I oO

"_ = __oo ay(},o) ei}Xd}

0 = _(_,0) ei_Xd_
.00

(Ixl<

In terms of the transformed stress function

qb(_,h) = 0

dd_y(_,h) = 0

dd_(_,O)= 0

S2_'a = oo _2_(_'0) ei_Xd_
E

and, use of equation (19) having been made,

- dy 3 _2

Substitution of equation (13) into equations (17) to (19) yields

_, the boundary conditions are

(Ixl<,)

(Ixl>

(17)

(18)

(19)

(20a)

(20b)

9



where

C =-_-(2_2h 2 + 2l_th + 1- e -21_]

A=l_l(21_lh+l- e -21_lh)

The direct stresses are certainly even functions of x

stress function _(x,y). It is then easily shown that _(_,y)

This statement further implies that D is an even function of _, and allows equa-

tions (20) to be modified to

and so, therefore, is the

is an even function of _.

and

(21)

(22a)

0= -_D-(sinh 2_h + 2_h)cos _x d_ (Ix i> 1) (22b)

Equations (22) are the dual integral equations which must be solved for the unknown

function D(_).

In order to cast equations (22) in a form suitable for treatment by the method of

reference 5, the following identity is used:

/_x\l/2
cos J_l/2( x) (23)

and the following substitutions are made:

f(_) = _(sinh 2_h + 2_h)

_(cosh 2_h - 2_2h 2- 1_
G(_) = \ sinh 2_h + 2_h

(24)

In equation (23), J_l/2(_x) is the Bessel function of the first kind of order -1/2. With

these substitutions, equations (22) assume the form

10



and

where

g(x) = o(2)l/2x-1/2

and the unknown function is now f(_). According to reference 5, equation (25b) is satis-

fied automatically by

f(_) = _l-k > AmJ 1(_)
m=0L-J 2m+k-

(26)

in which k is required only to be real and positive, and the A m values are to be

determined through the satisfaction of equation (25a). When g(x) is of the form kx -1/2,"

further use of the method of reference 5 converts equation (25a) into the following infinite

set of linear algebraic equations in Am:

A 0 + Z"m,O m:'1)m=O

oo

An+ I Lm,nAm =0 (n= 1, 2, 3, . . .)
m=O

_F

(27)

where

Lm,n = (4n + 2k - 1) 2-2kG._. - J 1(_) J 1(_) d_t
2m+k - - 2n+k - -

2 2

(28)

For the present case of uniform pressure in the crack, _. = (_/2)1/2_, and it is
(DT

convenient to set k = 3/2 and A n = -_- Pn. Equations (27) and (28) become

PO + _ Lm,OP m: 1
m=O

Pn + _ Lm,nPm = 0

m=O

in= 1, 2, 3, . .

(29)

11



and

which for the present problem becomes

J2n+l (_)

Lm, n =-2(2n + 1).y: 2_ 2h2 + 2_h + 1- e -2_h ._sinh 2_h + 2_h J2m+l(_) J2n+l(_)
(30)

For a specified value of h (>0), a square array of Lm, n values is computed from

equation (30) by numerical techniques. The order of the array required for accurate

determination of the Pn terms (hence, D and eventually _(_,y)) is dependent on the

assigned value of h. For large values of h (>1) the coefficients in equations (29) con-

stitute a very nearly diagonal matrix. In fact, as h tends toward infinity, the matrix

becomes diagonal, and the only nonzero root of equations (29) is P0 = 1/2. In general,

then, the Pn values decay more or less rapidly with increasing n, depending on whether

h is large or small. Specification of a large value of h dictates the computation of

only a few Lm, n terms, whereas a small value of h (<1) calls for a large array of

Lm, n terms.

Once a sufficiently large array of Lm, n terms has been computed, the Lm, n

terms are inserted into a truncated system of equations (29), which is then solved for Pn.

In all the problems treated here, more simultaneous equations have been solved than

appeared to be necessary for good convergence. The computations have been performed

for numerous values of h in the range 0.1_-< h -< 6.

On the line containing the crack (y = 0),

Cry(X,0) = - _ _2_(_,0) cos ix d_

which by virtue of equation (13), equations (21), the first of equations (24), and equa-

tion (26), becomes

cO

zO'y(X,O) = -o" Pm
m=O

cosh 2_h - 2_2h 2 - 1

sinh 2_h + 2_h

or in a form better suited to present purposes

J2m+l(_ ) cos _x d_

Cry(X,0) = -or _ Pm 1 - 2_2h2 + 2_h + 1 e -2_h_ - -
m=0 " sinh 2_h + 2_h )J2m+l(_ ) cos _x d_ (31)

12



From reference 7, after slight simplification,

_0 _ cos[(2m + 1)sin-Ix] "
J2m+l(_) cos _x d_ = (1 - X2) 1/2 (X < 1)

//J2m+l(_) cos _x d_ = (-1) m+l

J

(32)

The region of primary interest here is x > 1 which contains the area immediately ahead

of the crack tip. From equations (31) and (32),

is at

 mlx I-'>mm:O

÷,_/ 2_2h 2 + 2_h + 1- e -2_h _tsinh 2_h + 2_h J2m+l(_) cos _x d (x > 1) (33)

J

It is apparent from physical considerations that the only singular point of ay(X,0)

x = 1. It is now convenient to define a (dimensional) stress intensity factor by

or in terms of dimensionless quantities

K' = E_(2a)l/2 lim [(x- 1) 1/2 -_(x,0_
x-*IL

where E(_ is the uniform pressure applied to the crack faces, and the _/2 has been

inserted strictly for convenience. Then the dimensionless stress intensity factor can

be defined by

K' =21/21imDx_ 1)1/2 a___x,0_K = Eoal7- _ x--IL-
(34)

It is shown in appendix C that the infinite integral in equation (33) is not singular at

x = 1; therefore, it follows that the stress intensity factor is contained entirely in the

first term on the right-hand side of equation (33) because only that term survives the

limiting process indicated in equation (34).

13



Sincethe dimensionless stress 8
intensity factor for an infinite plate
under the same loading is given simply

7

by

Koo= 1

Oy= Oxy= 0

/ '/_ 2h

6 O =O =0

then from equations (33) and (34) the y xy

asit 5

te

KF

4
oo

I (-l)mpm (35)
Koo m=0 3

KF/Ko o may be considered
infi [te 2

Koo to
1

ratio of dimensionless stress intensity

factors for the strip and the infinite

plate is

The ratio

as a multiplying factor on the infinite-

sheet stress intensity factor

account for the effect of finite strip

width. This ratio is plotted in

figure 2.

This problem can be changed, by

superposition of a constant uniaxial

0 1 2 3 4 5 6

h

Figure 2.- Variation of KF/Koo with h. Uniform pressure and free

longitudinal ewe.

stress field ay(X,y) = a, to a physically more realistic problem in which the crack sur-

faces are free of applied load and the longitudinal edges y = +h are subjected to a uni-

form normal tensile stress. The stress intensity factor is unaffected by this alteration.

Zero normal displacement of longitudinal edges.- This problem differs from the

preceding one only in that the condition of zero normal stress on the longitudinal edges is

replaced by the condition of zero normal displacement. With symmetry about the lon-

gitudinal center line (y = 0) accounted for, the boundary conditions on the upper half of

the strip are

v(x,h) = 0

_xy(X,h) = 0

axy(X,0) = o

v<x,0) 0xl<1)
v(x,o)=o (1 1>1)

14



This problem is solved by the sameprocedure employedin the first problem. The ana-
lytical details are presented in appendixA. The ratio of stress intensity factors is again
found to be

oO

KFK'-'_ = (-1)mpm
m=O

Here, of course, the Pm terms generally differ fromthose found in the first problem.

The ratio KF/K_o is plotted in figure 3 for 0.1 < h < 6.

Another quantity of some interest is the normal stress distribution on the edge

y = h. This stress arises from the zero normal displacement boundary condition. In

appendix A, it is found to be

oO

=-2a _T Pm _o sinh _h+ _hcosh _hJ2m+l(_) cos _x%(x,h) d_

m=O JO cosh 2_h - I

This stress is plotted in figure4for h=2, 1, and0.1 in the range 0 <x-<2. It is

symmetric about the line x = 0.

By superposition, this problem can be converted into one in which the crack faces

are free of applied load and the longitudinal edges y = +h are uniformly displaced away

from the longitudinal center line; that is, in dimensionless terms,

v(x,h) = -v(x,-h) = oh

The dimensionless normal stress on

the edges y = _=h required to pro-

duce this uniform edge displacement

is given by

_y,1 = a + _y(X,h)

This modified version, of course,

yields the same stress intensity fac-

tor and corresponds to constant-

edge-displacement tensile tests if

the testing machine grips do not

introduce significant shear stresses

at the edges. However, if the testing

machine grips produce an effectively

clamped-edge condition, the results

of the following analysis should prove

to be more pertinent.

KF

.8

.6

.4

.2

= Oxy= 0

v= Oxy=O

I I I I I I
0 1 2 3 4 5 6

Figure 3.- Variation of KF/Koo with h. Uniform pressure and zero

normal displacementof longitudinal edges.

15



1,2 --

1.0

.8

.6

-o .4

.2

_h__l h=O'l

y

v= °xy=° _ _,

o +l-x
V=O'xy=0

-.2 I I I I I
0 .4 .8 1.2 1.6 2.0

Figure4.- Normalstressonlongitudinaledge.Uniformpressureand
zeronormaldisplacement.

1.O

KF
Koo

.8

.6

.4

.2

// _ 2h

I I I I I I
1 2 3 4 5 6

/

Figure5.- Variationof KF/Koowith h. Uniformpressureand
clampedlongitudinaledges.

Clamped longitudinal edges.-

For the cracked plate strip with

clamped edges and uniform pressure

in the crack, the boundary conditions,

with symmetry accounted for, are

u(x,h) = 0

v(x,h) = 0

 xy(x,O)=o

 y(x,0)= (Ixl<
v(x,0) = 0 (Ix I > 1)

By the procedures employed previ-

ously, the ratio of stress intensity fac-

tors is again

O(3

K F
= _ (-1)mpm

m=0

The Pm terms differ from those of

the preceding problems and, because

of the clamped-edge condition, depend

on the value assigned to Poisson's

ratio /_. The ratio KF/Koo has been

computed for /l = 0 and 0.5, two values

which encompass those commonly used

for most engineering materials, and

for numerous values of h in the range

0.1 < h _-<6. This ratio is plotted in

figure 5.

It might be noted here that these

results have been derived under plane

strain assumptions. It is easily

ascertained, however, that the results

for plane stress are bracketed by the

plane strain results presented in

figure 5.

The normal stress on a longi-

tudinal edge is found to be

16



oo

-4a Pm
%(x,h)=(I__)2 =o

2 cosh _h + (1 + /I)_h sinh _h J2m+l(_l,_, cos _x d_
3- g sinh 2_h - 2_h
l+g

This stress has been computed for p = 0 and 0.5, and is plotted in figure 6 for

h=4, 1, and0.1, in the interval 0_-<x=<2.

1.2

1.0

.8

.6

-0 .4

.2

0

F y

" -o°.,

-.2 I I I I I
0 .4 .8 1.2 1.6 2.0

Figure 6.- Normal stress on longitudinaledge. Uniform pressureand
clampedlongitudinal edges.

Edge Sliding Mode - Uniform Shear

The problems contained in this section are concerned with the sliding of the crack

faces on each other in the plane of the plate due to the application of uniform shear stress

E_- to the crack faces. Again from symmetry considerations, it is possible to restrict

attention to the upper half of the strip.

Free longitudinal edges.- In this problem the longitudinal edges of the strip are

free of external load. The boundary conditions on the upper half of the strip are

ay(X,h) = 0

axy(X,h)= 0

17



KF

K_

2

Oy= Oxy= O

ay -- Oxy= 0

I I I | I I

1 2 3 4 5 6

Figure 7.- Variation of KF/K=o with h. Uniform shear stress and

free longitudinal edges.

ay(x,O) = o

_,xy(X,O)--_- (Ixl < 1)

u(x,O) = 0 ([ x[ > 1)

In these shear problems, it is now the

shear stress which is singular at the

crack tip. Aside from this fact, how-

ever, the analysis of this problem dif-

fers little from those which precede it.

The ratio of stress intensity factors is

determined in appendix A to be

2= (-l)mpm
m--O

This ratio of shear stress intensity fac-

tors has been calculated for 0.1 < h <=6

and is presented in figure 7.

Zero normal displacement of longitudinal edges.- This problem differs from the

preceding one in that the longitudinal edges of the strip are restrained against normal

displacement. The boundary conditions on the upper half of the strip are

v(x,h) = 0

CTxy(x,h)= 0

ay(x,O) = o

axy(x,O)=T (Ixl<1)
_(x,O): 0 (IxI>_)

Details of this analysis also are contained in appendix A. The ratio of stress intensity

factors has the same form as in the preceding problems. It has been computed for

0.1 _<-h -<_6 and is presented in figure 8.

Restriction of normal displacement of the longitudinal edges gives rise to normal

stress there. This stress is found to be

OO

m=0

_h sinh _h J2m+l(_) sin _x d_
cosh 2_h + 1

18



This normal stress is plotted for
h=2, 1, and0.1 in figure 9, in the
range 0 _--<x _-<2. It is an antisym-
metric function of x.

The stress intensity factor for
this problem is identical to the stress
intensity factor for the problem in
which the crack faces are free of

stress, and the longitudinal edgesare
subjectedto uniform shear stress
while being restrained against normal
displacement.

Zero tangential displacement of

longitudinal edges.- In this problem the

longitudinal edges of the strip are

restrained against tangential displace-

ment and the crack faces are subjected

to uniform shear stress ET. The

boundary conditions on the upper half

of the strip are

(_y(X,h) = 0

u(x,h) = 0

,_y(x,O)=o

_y(X,O)_-_ (Ixl<1)

u(x,o)=o (Ixl_1)

For this problem the ratio of stress

intensity factors again has the same

form. It has been computed for numer-

ous values of h in the range

0.1 _-<h _-<6. The results are presented

in figure 10.

Shear stress is present at the lon-

gitudinal edges of the strip, because of

restriction of tangential displacement.

In appendix A, this stress is found to be

KF

2.0

1.5

1.0

v= Oxy= 0

/ '/_ 2h

V= Oxy=O

_L__
.75 I I I i I I

0 1 2 3 4 5 6

h

Figure 8.- Variation of KF//Koo with h. Uniform shear stress and
zero normal displacement.

1.2

.4

0

-.4

Y

v=%=of

h=lI

-.8 I I
0 .4 .8

V=O =0
xy

h=0.1

I I I

1.2 1.6 2.0

Figure 9.- Normal stress on longitudinal edge. Uniform shear
stress and zero normal displacement.
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oo

axy(x,h) =
m=O

sinh gh - _h cosh gh J2m+l(_) cos ix d_
cosh 2_h - 1

KF

1.3

1.2

1.1

1.0

U=Oy=O

U=ay=O

I I I

1 2 3

h

2h

I I , J

4 5 6

Figure10.- Variationof KF/Koowith h. Uniformshearstress and
zerolateraldisplacement.

plates.

It has been computed for h = 2, 1,

and 0.1 and is plotted in figure 11 for

0_-<x-<2. It is symmetric in x.

The stress intensity factor for

this problem is the same as for the

problem in which the crack faces are

stress-free and the longitudinal edges

are uniformly displaced tangentially by

an amount u(x,:l:h) = _: and are

free of normal stress.

Bending Problem

The lateral bending of a thin

strip containing a central longitudinal

crack gives rise to infinite moments

(hence, infinite bending stresses) at

the tips of the crack, according to the

classical small-deflection theory of

In dimensionless form, the equations governing bending of a thin plate in the

absence of lateral load are (see ref. 8)

V4w(x,y) = 0

Moments:

My = - 82w + /1 _-_/

Shear forces:

Mxy = - Myx = (1 - /l).aax_ _

a v2w
QX = - a"_

a v2w
Qy = _
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Figure 11.- Shear stresson longitudinaledge.Uniformshearstress
andzerolateraldisplacement.

In the present problem, the longitudinal edges of the strip are simply supported and sub-

jected to a uniform bending moment, designated as -M in the dimensionless system.

For purposes of determining the stress intensity factor, a uniform bending moment

My(x,y) = M is superimposed on the original system; this process results in uniform

bending moments on the crack surfaces and longitudinal edges which are free of bending

moment in the y-direction. Attention again is restricted to the upper half of the strip

because of symmetry considerations.

The boundary conditions are

w(x,h) -- 0

My(x,h) = 0

B2w, ^, u)___.(x,O)_= o
_--_-tx, v_ + (2 - ax" j
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Because the bending problem is also governed by the biharmonic equation, the method of

analysis employed in the preceding problems is applicable. The quantity of primary

interest is now the bending moment My(x,0). In appendix A, it is found to be

My(x,O)=-M Z Pm (-1)m

m0

+
2:h( )+e2 h

_0 cosh 2_h + 1 J2m+l(_ ) cos _x d_

The ratio of bending stress intensity factors for the strip and the infinite plate then is

cO

KF
K"_= _ (-1)mPm

m=O

Note the dependence of My(x,0) on Poisson's ratio

computed for /1 = 0 and 0.5 for numerous values of

results are presented in figure 12.

/x. The ratio KF/Koo has been

h in the range 0.1 =<h_-<6. The

2.5

w=My=O

2.o _-2-_

_ ----._ _= 0

El l -----_=0.5
1.5

I'0 _ _ _ ....

0 1 2 3 4 .5 6

Figure 12.- Variation of KF/Koo with h for bending problem.

Crack Opening Mode -

Concentrated Forces

In the three problems which follow,

the crack faces are subjected to equal and

opposite compressive concentrated forces

at their centers. Because the analysis of

this particular class of problems differs

somewhat from preceding analyses, the

first of these problems is analyzed in

some detail, and the analysis of the

remaining problems is relegated to

appendix B.

Free longitudinal edges.- In this

problem the edges of the strip are free of

external load and the crack faces are sub-

jected to concentrated forces of (nondi-

mensional) intensity P/Ea. Attention is

restricted here to the upper half of the
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strip by virtue of symmetry properties. The boundaryconditions on the upper half of
the strip are

ay(X,h)= 0

Crxy(x,h) = 0

_xy(X,O)=o

_y(X,0)=- _ _(x) (Ixl<1)Ea

v(x,0)=0 (IxI>1)

where 6(x) is the Dirac delta function. The transformed boundary conditions are

"N

_(_,h) = 0

aa--$(_,h)= 0

dd-y_,O)= 0

(36)

P 6(x): I_[_ _2_(_,0)cos_xd_ (ix[<1)

_0 d3-0 : d-_(_,0)cos_x_ (Ixl>1)
dyO }2

J

Substitution of the general solution for _ (eq. (13)) into the first three of equations (36)

again yields equations (21). The following substitutions are made

cos _x = J_l/2(_x )

f(_) = _--_(sinh 2_h + 2_h)

cosh 2_h - -
G(_) = _ ;i_ 2_1_ +_-h" 11

2_2h 2

The dual integral equations then assume the form

g(x) = G(_) f(_) J 1/2(_x ) d_ (Ixl<1) (37a)
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and

where g(x) now has the form

o = J_l/2(ex)de (Ixl

),x'l/26(x). Once more it is assumed that

> I) (3'/b)

co

f(_) = _-1/2

m=0

Am J2m+l(_)

which automatically satisfies equation (37b). Further application of the method of refer-

ence 5 yields a different set of linear algebraic equations

oo

Pn + _ Lm,nPm = 1 (n=0, 1, 2, . . .) (38)
m=0

where

and

Lm,n

P---Pn =An
Ea

=2(2n+l) f;(_- 1)J2m+l(e)J2n+l (e) d-'_

For x > 1, the stress ay(X,0) is found to be

ay(X,0) = 2P _ pm f (-1) m_-E-a m=0 x2 - 1)l/2Ix + (x2 - 1)1/212m+1

_o 2_2h 2 + 2_h + 1 - e-2_h J2m+l(_) cos _x d_ (39)+

J0 sinh 2_h + 2_h

For the problem of concentrated forces itis again convenient to express the effect

of stripwidth in terms of the ratio of stress intensityfactors. For the infiniteplate

with the same loads, the stress _Z',°°(x'0)is given by

ay,oo(x,0)= 2__P.P_ (-1)m (40)

IrEa 1)I/2[x 2]m=O( x2- +( x2- 1_ / 2m+l
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Then the ratio of stress intensityfactors

may be written as

KF O'y(x,O)
-- = lim (41)

K_ x-10"y,co(x,O )

After substitution of equations (39) and (40)

into equation (41) and appropriate passage

to the limit, the ratio of stress intensity

factors is found to be :

KF

cO

KF
--=1+2 _ (-l)m(P m- 1) (42)K¢o

m=0

This ratio has been computed for

0.1_--- h _-<6, and the results are plotted

in figure 13.

Zero normal displacement of

longitudinal edges.- This problem differs

from the preceding one in that the longi-

tudinal edges are restrained against nor-

mal displacement. The boundary condi-

tions on the upper half of the strip are

V(x,h) = 0

axy(X,h)=0

(_xy(X,0) = 0

°y= Oxy= 0

2h

6-

Oy= Oxy= 0

0 1 2 3 4 5

h

Figure B.- Variation of KF/I_, with h. Concentratedforce
and free longitudinal edges.

_y(x,0):-_ o(x> (Ixl<,)Ea

v(x,0): o (Ixl>1)
The ratio of stress intensity factors for this problem is found in appendix B to have the

form of equation (42). The results are presented in figure 14.

The normal stress on the edge y = h also has been obtained. It is

cO

_-_P _" c__n. _ +_._o__
(_y(X,h)_-a _ Pm J0 J2m+l(_) cos _x d_m=O cosh 2%= i

This stress is plotted in figure 15 for h=4, 2, and 1.
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Variation of KF/K=o with h. Concentratedforce and zero
normal displacement.
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Figure 15.- Normal stress on longitudinal edge. Concentrated force
and zero normal displacement.
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Clamped longitudinal edges.- In

this problem the longitudinal edges

are completely restrained against

normal and tangential displacements.

The boundary conditions on the upper

half of the strip are

u(x,h) = 0

v(x,h) = 0

_xy(X,0) = 0

 y(X,0)=- o(x) (Ixl <Ea

v(x,o)=o (Ixl>1)
The analytical details of this problem

are contained in appendix B. The

ratio of stress intensity factors again

has the form of equation (42). It has

been computed for numerous values of

1.O

.8

.6

KF

.4

.2

_///// u=v=O

// / ,
/ / o:v=o

I I I I I

l 2 3 4 ,5 6

h

Figure 16.- Variation of KF/I_ with h. Concentrated force and
clampedlongitudinal edges.

h in the range 0.1_-<h_-<6, and the results are

presented in figure 16. For this problem, the ratio of stress intensity factors depends

on Poisson's ratio. It has been computed for _ = 0 and _ = 0.5.

There are stresses along the longitudinal edges because of the clamped-edge con-

dition. The normal stress on an edge is found in appendix B to be

oO

_ 4P
ay(X,h) = yEa(1 + _t) 2 m=O

C_o 2 cosh _h + (1 + _)_h sinh _hPm J2m+l(_) COS _x d_J0 3 - U sinh 2_h - 2_h
1+_

This stress is plotted for h=4, 2, andl in figure 17 for _t =0 and _t=0.5.

RESULTS AND DISCUSSION

It is convenient to consider the ratio KF/Koo as a multiplying factor on the

infinite-sheet stress intensity factor to account for the finite width of a plate in an actual

structure or to account for the finite distance between testing machine grips in laboratory

tests of cracked sheet. With regard to the latter application, the results presented

should prove useful in the correlation of existing experimental data. These results also

should be helpful in the design of test specimens, because they furnish the specimen

designer with guidelines for minimizing the perturbing influence on the stress intensity

factor of the boundary conditions imposed by the testing machine grips.

27



Oy(x,h)
2P
_a

.8

.5

.4

.2

0

-.2

Y

u=v=O l Jt

P I h\ /
U=v=O

I I I I 1

.4 .8 1.2 1.6 2.0

X

Figure17.- Normalstresson longitudinaledge.Concentratedforce
andclampedlongitudinaledges.

The KF/Koo curves for the six

crack-opening mode problems are pre-

sented in figures 2, 3, 5, 13, 14, and 16.

For the problems in which the longitudinal

edges of the strip are stress-free (see

figs. 2 and 13), the ratio of stress inten-

sity factors is seen to be always greater

than 1, and to approach 1 rather rapidly

for moderately large values of h, the

ratio of strip width to crack length. On

the other hand, the ratio is always less

than 1 for the problems involving restraint

of the normal, or normal and tangential,

displacements of the edges of the strip.

(See figs. 3, 5, 14, and 16.) Again, the

ratio is seen to approach 1, although

somewhat less rapidly than for free edges,

as h becomes large.

Figures 5 and 16 are for problems involving completely fixed longitudinal edges, a

set of boundary conditions which causes the stress intensity factor to depend on Poisson's

ratio. For these problems, the stress intensity factors have been computed for _ = 0

and _ = 0.5, two values of Poisson's ratio which encompass the values commonly

assigned to most engineering materials. The results suggest that Poisson's ratio exerts

little influence on stress intensity factors for most practical crack-opening problems.

In the crack-opening mode problems involving restraint of displacements at the

longitudinal edges of the strip, normal stresses arise there. These normal stresses have

been computed for various values of h and are presented in figures 4, 6, 15, and 17.

Figures 4 and 6 are for problems involving uniform pressure in the crack, and figures 15

and 1_/ are for the concentrated force problems. For larger values of h the normal

stresses are rather small and well-behaved, but these stresses and their gradients grow

as h becomes small because the stresses due to the applied forces and the crack-tip

singularity have less area in which to diffuse and decay.

Figures 6 and 17 are for the problems in which the longitudinal edges of the strip

are fixed so that the stresses depend on Poisson's ratio. Much like the stress intensity

factors for these problems, the normal stresses are not strongly influenced by changes

in Poisson's ratio.

A curious result coming out of the two concentrated force problems which involved

restraint of normal displacements at the strip edges can be seen in figures 14 and 16.
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As h becomes small, the stress intensity factor goes to zero at a seemingly arbitrary

value of h, specifically, in the neighborhood of h = 0.8, the precise crossing varying

with Poisson's ratio in the case of fixed longitudinal edges. This behavior is due to

closure of the crack tips. The KF/K_o curves have been terminated at the crossings

because for smaller values of h the problems cease to be only crack problems, and

instead become very complicated contact problems which are not expected to yield addi-

tional significant information on the stress intensity factors.

The KF/K_o curves for the edge-sliding mode (shear) problems are presented in

figures V, 8, and 10. For the plate with free longitudinal edges (fig. 7), the stress inten-

sity factor increases without limit as h approaches zero, and approaches the infinite-

sheet stress intensity factor as h becomes large. This result is similar to those

obtained for the crack-opening problems with the same free-edge conditions.

For the second shear problem, in which normal displacement of the longitudinal

edges is prevented, the stress intensity factor for the strip (fig. 8) differs little from its

infinite-sheet counterpart except for very small values of h, where the problem has lost

most of its physical importance. The restriction of normal displacement of the longi-

tudinal edges gives rise to normal stresses there. This normal stress is presented in

figure 9 for several values of h. Not unexpectedly, the normal stress is more severe

for small values of h.

An unusual result from the third shear problem, in which the tangential displace-

ment of the longitudinal edges is prevented, is apparent in figure 10. The ratio KF/K_

approaches 1 at both ends of the h-axis, and is greater than 1 at all interior points. This

result means that there are two values of h corresponding to every admissible value

of KF/IQo.

In this shear problem, shear stresses develop at the longitudinaledges. This

shear stress is presented in figure II for several values of h. As in the preceding

problems, the stripwidth exerts a strong influenceon the stress at the boundary.

For the one plate bending problem treated here, the KF/K_o curves are presented

in figure 12, where itis seen thatthe ratio of moment (or outer-fiber bending stress)

intensifyfactors depends on Poisson's ratio. Again, the effectof Poisson's ratio on

KF/K_o is small. The ratio of stress intensityfactors approaches I for large h and

increases without limit as h approached zero. Finite strip width is seen to have little

influence for ratios of strip width to crack length greater than about 2.

For the problems treated herein, finitestripwidth is seen to be of littlesignificance

for ratios of strip width to crack length greater than 6. In fact,for problems involving

free longitudinaledges, h greater than about 3 is large enough to allow treatment of the

strip as an infiniteplate,at least for the purposes of crack-lip stress fieldinvestigations.
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CONCLUDING REMARKS

Stress intensity factors have been obtained for several problems involving crack-

opening or edge sliding modes and, in one case, opening of the crack by bending, for a

plate strip containing a central longitudinal crack. The stress intensity factors, normal-

ized with respect to their counterparts for an infinite plate under the same loading, have

been presented as functions of the ratio of strip width to crack length for the entire range

of practical interest. For problems in which the stresses depend on Poisson's ratio, the

results have been obtained for at least two values of Poisson's ratio which encompass the

range of primary engineering interest.

In addition, where restrictions of displacements of the longitudinal edges of the

strip have given rise to boundary stresses, some sample stress distributions have been

presented to illustrate their dependence on the ratio of strip width to crack length.

For the problems treated herein finite strip width is seen to be of little significance

for ratios of strip width to crack length greater than 6. In fact, for problems involving

free longitudinal edges, h greater than about 3 is large enough to allow treatment of the

strip as an infinite plate, at least for the purposes of crack-tip stress field investigations.

The results presented herein should be useful in the conversion of data from tests

of cracked sheet-metal specimens to practical information suitable for use by design

engineers. The results should also be of assistance in the design of cracked-sheet test

specimens to avoid edge effects.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., February 1, 1967,

124-08-06-07-23.
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APPENDIX A

PROBLEMS INVOLVING UNIFORM LOADS ON CRACK FACES

With the exception of the first crack-opening problem, which has been given detailed

treatment in the body of this report, this appendix contains the bulk of the analytical

details of the problems involving uniform loading of the crack faces. The three types of

uniform loading considered are: (1) normal stress, (2) shear stress, and (3) bending

moment.

Crack Opening Mode - Uniform Pressure

Zero normal displacement of longitudinal edges.- In this problem, the edges of the

strip are restrained against normal displacement and the crack faces are being separated

by uniform normal stress. Because of symmetry considerations, only the upper half of

the strip needs to be considered. The boundary conditions there are

v(x,h)= 0

¢;xy(X,h) = 0

_xy(x,O)--o

gy(x,O) =-a (Ixl < 1)

: o (Ix1>
In terms of _(_,y) the transformed boundary conditions are

y_3(_,h) = 0 "

-_y(_,h) = 0

_-_$(_,o)--0 (A1)

(i )a = _2_(_,0) cos _x d_ x I< 1

1)O=
dy 3 g- .,_U
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APPENDIX A

Substitution of the expression for

yields

_(_,Y) (eq. (13)) into the first three of equations (A1)

(A2)

where

Then by use of equations (A2), the identity (23), and the following substitutions:

_3/2D,
f(e) = - A-_--E-_ cosh 2_h - 1)

(sinh 2_h + 2gh_
G(e) = e_ cosh 2eh - 1 ]

the last two of equations (A1) assume the form

g(x)=_o f(_)G(e)J_l/2(ex)de (Ixl

o= f(_)J_ll2(ex)de (Ixl

(A3)

and again

_-
Therefore, the method of reference 5 may be applied. It is assumed that

CO

f(_)=_ _ Pm J2m+1(e)
m=O

and the following infinite system of linear algebraic equations results:
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APPENDIX A

oO

P0 + _ Lm,0Pm = I

m--0

oO

Pn + _ Lm,nPm =0 (n= I, 2, 3,

m--0

(A4)

Lm,n=2(2n+l)_:(G-_ - 1)J2m+1(_)J2n+1 (_)d_

After determination of the Pn terms the stress ay(X,0) can be written

_y(X,0)= (; _ Pml (-l)mm=O x 2 - 1)1/2Ix +(x2 - _1/2] 2m+l

- So + hcosh 2_h - 1 J2m+l(_) cos _x d

As before, the infinite integral in equation (A5) can be proved convergent at

sequently, the ratio of stress intensity factors is again found to be

(AS)

x = 1. Con-

oO

KF
_-_= _ (-l)mpm

m=0

Because of the restriction against normal displacements of the longitudinal edges,

there is normal stress on these edges. In terms of the transformed stress function _,

this normal stress is

1 _ :° _2 _(_,h) cos _x d_ay(X,h) = -
"_0

which with the proper substitutions becomes

cO

: -2(; Z Pm _: sinh _h + 4h cosh _h J2m+l(}) cos _x d} (A6)%(x,h)
m=0 cosh 2_h - 1

This stress distribution is symmetric in x. With a sufficient number of the Pm values

already computed for this problem, the computation of ay(x,h) is merely a matter of

numerically performing the integration indicated in equation (A6).

33



APPENDIX A

By superposition, this problem can be converted into a problem in which the crack

faces are stress-free and the longitudinal edges of the strip are uniformly displaced

away from the longitudinal center line; that is, in dimensionless terms,

v(x,+h) = +oh

The (dimensionless) normal stress on the edges y = +h which is required to produce

this uniform edge displacement is given by

ay,l(X,+h)= a + ay(X,h)

This modified version, of course, yields the same stress intensityfactor and corresponds

to constant-edge-displacement tensile testingmachine experiments ifthe testing machine

grips do not introduce significantshear stresses at the edges. On the other hand, ifthe

testing machine grips do produce a truly clamped-edge condition,the results of the fol-

lowing analysis should prove to be more pertinent.

Clamped longitudinaledges.- For the centrally cracked plate with clamped edges

and uniform pressure in the crack, the boundary conditions for the upper half of the strip

are

u(x,h) = 0

v(x,h) = 0

C;xy(x,O)= o

C;y(x,O) = -C;

v(x,O) = o

In terms of _, the transformed boundary conditions are

d2_(_,h) + g_2_(_,h) = 0
dy 2

dy 3 uy

c; = Ir _2_(_,0) cos _x d_

0=fod-_(_,O) cos _xd_
dy_

(Ixl < 1)

(ixl>1)

(Ixl

(Ixl

<1)

.,#

(AT)
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Substitution of equation (13) into the first three of equations (AT) gives

where

D(3-_e2J_lh 2_2h 2 21_lh+--
A=-A\I+g + -

D(3- _ e-21_fh
C=-A\I+ _

4K +l 1l+/.t

4K)+ 2_2h2 + 2]_lh + YT"j_+ 1

and

By use of equations (A8), the identity (23), and the following substitutions:

_3/2D {3__:._ 2_h/f(_) = - _kl + _t sinh 2_h -

+ 4K + 1\

\

l+gG(_)= _ 1+ /I __ )sinh 2_h 2_h

(A8)

the last two of equations (AT) again take on the form of equations (A3). Application of the

method of reference 5 yields the now-familiar system of equations (A4), which are to be

solved for the Pn terms.

After some substitutions and manipulations, the stress ay(X,0) for x > 1 is
found to be

ay(x,O)= cr _ Pm (-1)m

m=0 x2 - 1)1/2Ix + (x 2 - 1)1/2] 2m+1

4K _2h2 3-/1 e-2_h
+1--_ +2_h+2 +l+g

3-/1 sinh 2_h - 2_h
1+/1

J2m+l(_) cos _x d_
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From thisequation, itis found that the ratio of stress intensityfactors has the form

oO

KF

_--_= _ (-1)mpm
m=O

An additionalcomplication in this problem is thatthe stress intensityfactor now

depends on Poisson's ratio _t. In order to obtain an envelope of KF/K_¢ curves, the

Lm, n terms (hence, the Pm terms and KF/Koo ) have been computed for _t= 0 and

/I--0.5,two values which encompass those commonly used for engineering materials.

Because of the dependence on Poisson's ratio,the results for plane stress condi-

tions willdifferslightlyfrom the present results,which are for plane strain. Itis

easily shown, however, that the KF/K _ curves presented here bracket the curves for

plane stress. In view of the generally small differences between the /I= 0 and _ = 0.5

curves, itis not feltthatthe additionalcalculationof corresponding curves for plane

stress is necessary.

Again there is normal stress on the edges y = +h. Itis found to be

40" m_ pm _O_° 2 cosh _h -_ (I -_ f_) _h sinh _h J2m._.l(_) cos _x d_ay(X,h) = (1 2_) 2 =0 _ sinh 2}h- 2}h
1+_

The required operations are performed numerically.

Edge Sliding Mode - Uniform Shear

The problems contained in this section are concerned with the sliding of the crack

faces on each other in the plane of the strip due to the application of opposing uniform

shear stresses Er to the crack faces. Again, because of symmetry considerations,

the investigation can be restricted to the upper half of the strip.

Free longitudinal edges.- In this problem the edges of the strip are stress free.

The boundary conditions on the upper half of the strip are

(Xy(x,h) = 0

Crxy(x,h ) = 0

 y(x,O) =o

-- (Ixl<
u(x,o): 0 (Ixl>
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The transformed boundary conditions are

_(_,h)= 0

dd-_(_,h)=o

_(_,0) =o

(, ,Ir = - i _ (4,0) cos ix d_ x I<
7T

o=So_,0)cos_x_ (Ixl>i)
dy 2

,w

Substitutionof equation (13)into the firstthree of equations (A9) gives

A=-C-- - 21_lh2Da 11

where

z_= 1- 21_lh-e-2l_l h

With the use of equation (23), equations (A10), and the substitutions

0_1/2_,
f(_)= - _--_(sinh 2_h - 2_h)

./cosh 2_h - 2_2h 2 -

G(_) = _ sinh 2_h - 2_h )

the lasttwo of equations (A9) assume the form of equations (A3),where

g(_)= r(2)l/2x-1/2

The method of reference 5 is now applied, and again equations of the form (A4) are

obtained.

However, for these shear problems, it is now the shear stress

singular at the crack tip. For x > 1, it is found to be

(A9)

(A10)

_xy(x,O) which is
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axy(x,O)= -r

+

oo

Z
m=O

Pmlx (-1)m2_ i)I/2[x

I - 2_h + 2_2h 2 - e -2_h

sinh 2_h - 2_h

+ (x 2 - 1)1/2] 2m+1

J2m+l(_) cos ix d_

With the following definition for the shear-stress intensity factor

K = 21/2 lim [(x 1)1/2 _(x,0)]
x--IL

the ratio of stress intensityfactors is

KF = (-l)mpm
m=0

The problem is equivalent, insofar as stress intensity factors are concerned, to one in

which the crack faces are stress free and the longitudinal edges are subjected to uniform

shear stress of magnitude ET.

Zero normal displacement of longitudinal edges.- This problem differs from the

preceding one in that the longitudinal edges are restrained against vertical displacement.

The boundary conditions are

v(x,h) = 0

Crxy(x,h) = 0

_y(x,O)=o

_xy(x,O)=_ (IxI<I)

utx,0):o (Ixl>_)

38



APPENDIX A

The transformed boundary conditions are

d--_-(_,h) = 0
dy 3

y(_,h) = 0

_(_,0) = 0

---_ _ (_,0)cos_xd_ (Ixl<1)

o-- (_,o)cos_x_ (Ixl>1)

Substitution of equation (13) into the first three of equations (All) yields

A = -C =-_--

B - _(e_l_lh÷1
where

A = 1 + e-21_lh

With the use of the identity (23), equations (A12), and the following substitutions:

f(_) = 2i_l/2D(cosh 2_h + 1)
A

J sinh 2_h + 2_h_
G(_) = g_ cosh 2_h ÷ 1]

the last two of equations (All) take on the form of equations (A3).

ence 5 is applied and equations (A4) again are obtained.

axy(X,0 ) is obtained as

(All)

(A12)

The method of refer-

For x > 1, the shear stress
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m=0 x2 - l)i/2[x + (x2 - 1)1/2]2m+1

J0C'°: - 2:h + e-2:h J2m+l(:) cos :x d_+

cosh 2:h + 1 J
From this equation,the ratio of stress intensityfactors is found to have the same form

as in the preceding problems.

The normal stress on the longitudinaledges, caused by the v(x,+h) --0 boundary

condition,is found to be

oO

= T Z_J_Pmo0¢_° _h sinh _h J2m+l(:) sin Ixd:_y(x,h)
m=0 cosh 2_h + 1

In this case, the normal stress is an antisymmetric function of x.

With respect to the stress intensity factor, this problem is equivalent to one in

which the crack faces are stress free, and the edges of the strip are subjected to uniform

shear stress while being restrained against normal displacement.

Zero tangential displacement of longitudinal edges.- In this problem the edges of

the strip are free of normal stress and restrained against tangential displacements.

The boundary conditions are

_y(X,h)= 0

u(x,h)= 0

%(x,O)= 0

In terms of

u(x,o):o (Ixl>:)

_, the transformed boundary conditions are

_b(_,h) = 0

a--_--(_,h)- 0
dy 2

,_(_,o)=o

(Equations continued on next page)
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_=- _ _ (_,o)cos_xd_ (Ixl<1)

0=So _,o_ oo__ d__ (ix1>1)
dy 2

J

(A13)

Equation (13) substituted into the first three of equations (A13) yields

A ; -C =--_

B D(e21_lh -

with

= 1-e'21_lh

(A14)

After substitution of equations (A14) into the last two of equations (A13), use of the iden-

tity (23), and use of the following substitutions:

f(_) = i_l(2D(cosh 2_h - 1)
/.%

G(_) = _k cosh 2_h

the system of equations (A3) again is obtained. The method of reference 5 is employed

to solve these equations for the Pm values, and the stress axy(X,0) is

axy(x,O)='_" _ Pm I (-1)mm=0 x 2 _ 1)l/2[x +_2_ 1)1/2] 2m+l

" cosh 2_h- 1 J2m+l (_) cos _x

The ratio of stress intensity factors is again found to be

cO

KF =
K-'_ _ ('l)mpm

m=0
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The shear stress at the edge y = h, caused by restriction of the tangential dis-

placement there, is given by

oO

Crxy(X,h) = 2T Pm

m=O

sinh _h- _h cosh _h J2m+l(_) cos ix d_
cosh 2_h - 1

This shear stress is symmetric in x. The stress intensity factor for this problem is

the same as for the problem in which the crack faces are stress free, and the edges of
E_h

the strip are uniformly displaced tangentially by an amount u(x,±h) = • --6-- and are
free of normal stress.

Bending Problem

This problem is concerned with the lateral bending of a thin plate strip containing

a central longitudinal crack. In the classical small-deflection theory of plates (see

ref. 8), the governing equations for a plate free of lateral load are

DV'4w '(x',y') = 0

where

and w'

= Et 3

is the lateral deflection of the plate middle surface, with moments given by

_(_)2w' _2w:/

, ~/82w ' 82w1._

My = -DI_-_ + _ _-xV2]

and shear forces given by

Q_=-5 a V'2w '

, 8
Qy = -D _-7 V'2w'

The foregoing equations can be nondimensionalized conveniently in the following manner.

Let

42



APPENDIX A

W' = aw

X' =ax

y'=ay

5
m_ = _- M X

, 5
My = _-- My

, , 5 5
MXy = -Myx = _" MXy = - K" Myx

Then the governing equations become

where

with moments

and shear forces

5
QX = _ QX

5
q_ = _-_ Qy

v4w(x,y) = 0

V 4 = a4V '4

a2w a2w_

>'x:-t,_+ '7)
(°": °"A

,v,Y:-t,7 +,_)
, a2w

MXy = -Myx = (1 - //)-_--_

0v2 QX = - 0-'_

o V2wJqy - -_

In the problem to be analyzed here, the longitudinal edges of the strip are simply sup-

ported, and a uniform bending moment DM/a is being applied to the crack surfaces

(M is a dimensionless measure of the magnitude of the applied bending moment).

(Al5)

(AI6)

(A17)

43



APPENDIX A

In terms of dimensionless quantities, the boundary conditions are

w(x,+h) - 0

My(x,±h) = 0

aF_.W_x0) 2 1 --o

My(X,0) = M

(x,0)= 0

The firsttwo boundary conditions describe the simple supports. The third derives for

x < 1 from the fact that the crack faces are free of shear force, and for x > 1 from

considerations of symmetry. The fourth is due to the applied uniform bending moment

(x < 1) and to symmetry (x > 1).

After Fourier transformation, the governing equations (A15) to (A17) take the form

d(_ _/_"- _ W(_,y) = 0 (A18)

with moments

M'X = _2_,_ _ d2_,

My = d2_ ' +
- _ /'L'_2_'

MXy-"--Myx = -i:(1- _)_y-yj

(AI9)

and shear forces

• d 2 •Ox=
2QY =- dy\dy2-

(A20)

In terms of _,(_,y), the transformed boundary conditions,with symmetry about the Ion-

gitudinalcenter lineaccounted for, are

_,(:,h)= 0 (A21)
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N - (2- _)_ _(_,o)

_-_Fd_ ot-MTr ._0 lay2 _,(_,0) - _2_,(_,

=0

cos _x d_

0 = (_,0) COS _X d_
Y

The general solution of equation (A18) can be written as

_(_,y) = (A + By)e-[ _lY + (C + Dy)el _[Y

Substitution of equation (A25) into equations (A21) to (A23) gives

-%

where

c---_<1-_.a_l_÷e-_'_'_)

A = [_1_<1 +e -21_lh)

K-
1+/1

Then with equations (A26) and the substitutions

cos _x = _,2 ) J-1/2 (_x)

_3/2_
f(_) = - £-L---_(cosh 2t_h + 1)

(Ixl>1)

(A22)

(A23)

(A24a)

(A24b)

(A25)

(A26)
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_f(_) ks+ _/IJ1/2(_x)
cosh2_h+ 1 J -

d_ (Ixl <1) (A27a)

and

0 = f(_)J 1/2(_x) d_

Equation (A27b) is satisfied by the assumption

CO

M _-1/2 _ PmJ2m+l(_)f(_) = 3 + u
m--O

(lxl>I) (A27b)

and further use of the method of reference 5 yields the familiar equations (A4), where

now

Lm,.n = -2(2n + 1) f0 cosh 2_h + 1 J2m+l(_) J2n+l(_) d__

The quantity of particular interest here is the moment My(x,0), given by

1 oo d2._ ' 0 - 1My(x,O)=-_fO [_y-__, ) _t_2_(_,0_COS _xd_

With the appropriate substitutions,the moment is found to be

co 1 - 2_h(_-_) + e -2_h
+ f0 cosh 2 _h + 1

My(x,O)=-M _ Pml x (-l)m
m=0 2_ 1)l/2[x + (x 2 _ 1)1/2] 2m+l

J2m+l(_) cos _x d_

The infinite integral in equation (A28) can be proved convergent at

ratio of the "moment intensity factors" is found to be

(x > 1) (A28)

x = 1, so that the
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= (-l)mpm
m=0

which is equivalent to the ratio of the outer-fiber bending stress intensity factors, since

the stress is given in terms of the moment by

6My
ey'-

t 2

Since the Lm, n values depend on Poisson's ratio, so also does the stress inten-
sity factor. It has been computed for four values of _ in the range 0 -< _ _-<0.5. The

results are presented in figure 12 where, because of the relative insensitivity of KF/Koo

to _, only the extreme values (for _ = 0 and _ = 0.5) are shown.
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PROBLEMS INVOLVING CONCENTRATED LOADS ON CRACK FACES

This appendix contains most of the analytical details of the problems concerned with

opening of a central crack in a strip by the application of equal and opposite concentrated

loads. The problem involving free longitudinal edges has been given detailed treatment in

the body of this report. For the sake of brevity, it will be referred to in this appendix,

wherever possible, in the discussion of the remaining concentrated load problems.

Crack Opening Mode - Concentrated Forces

Zero normal displacement of longitudinal edges.- In this problem the crack faces

are being separated by symmetrically applied concentrated forces of dimensionless mag-

nitude P/Ea. The edges of the strip are free of shear stress and are restrained against

normal displacement. The boundary conditions are

v(x,h) = 0

axy(x,h) =0

axy(x,0) = 0

In terms of

48

P 6(x)_y(x,O)-- Ea

v(x,O)= o

_, the transformed boundary conditions are

d3_(_,h) = 0
dy 3

dd--_y(_,h)= 0

_(_,0) =0
dy

P 6(x) = 1_/_-_ _ _2_(_,0) cos _x d_

0=_[d--_(_'0)c°s_X_dy_

(I

(i

(Ixl

(Ixl

<1)
>1)

(B1)
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Substitution of equation (13) into the first three of equations (B1) gives
-%

J

with

Substitution of the identity (23) and equations (B2) into the last two of equations (B1)

yields

In this problem,

= f(_)G(_)J 1/2(_x) d _ (ix]<1>

o= J_l/2( x) (Ixl>

_3/2,,
f(_) = - X'A--_cosh 2_h - 1)

_{sinh 2_h + 2_hh
G(_) = -\ cosh 2_h - 1 }

In accordance with reference 5, it is assumed in equations (B3) that

oO

= P 4-1/2f(_) _-_ _ Pm'J2m+l (_)

m--0

which satisfiesthe second of equations (B3) automatically.

method of reference 5 yields

oo

Pn + _ Lm,nPm = 1

in which, as usual,

m=0

(B2)

Further application of the

(B3)

(n=0, 1, 2,...) (B4)

Lm,n=2(2n+l)_0°°IG-_ - l_J2m+l(_)J2n+l(_)_ (B5)
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After solution of equations (B4) for a sufficient number of the

particular interest is found to be

Pn values, the stress of

(;y(X' 0)= 2P_-_ _ Pml (-l)mm=0 x2 - i)I/2[x + (x 2 - i)1/212m+1

J2m+l(0 cos _x d_

_o 1 + 2_h - e -2_h

o0 cosh 2_h - 1

from which the ratio of stress intensity factors is determined as

(x>l)

KFK¢o- 1 + 2 (-1)m(pm- 1)

m=0

(B6)

The normal stress on a longitudinal edge is

oO

- _-'_'_ Pm
m=O

sinh _h + _h cosh _h J2m+l(_) cos _x d_
cosh 2}h - 1

It is symmetric in x.

Clamped longitudinal edges.- In this problem, the edges of the strip are completely

restrained against normal and tangential displacement. The boundary conditions are

u(x,h) = 0

v(x,h) = 0

axy(x,O) = 0

In terms of

50

_y(_,o)=- P- _(x) 0xi<I)
Ea

v(x,o)=o (IxI>_)
_, the transformed boundary conditions are

ddy_2(_,h) + =
_ _2c_(_,h) 0

d-_-(_,h)- (2+ .)_2 dd__y(_,h)
dy3

=0

(Equations continued on next page)
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d3-

(BT)

Substitution of equation (13) into the first three of equations (BT) gives

_ D(3__:.__ e21_lh + 2_2h 2 - 21_lh +. 4K + 1_

A= ,_\,+;i ' ' "+/I /I

I

C D(3- /1 e-21_lh+2_2h2+2]_]h+.4K +lhl
_\i + _ • + _ /J

(B8)

where

3-_
A = ]_1(1--_ e-21_lh + 21_lh + 1)

and

K'-m

i+_

By virtue of the identity (23) and equations (B8), the last two of equations (B7) take on the

form of equations (B3), in which, for this problem,

f(_)= _\I + _ sinh 2_h -

= +
4K 1

cosh 2_h + 2_2h2 + +

3-__sinh2_h_ 2_h
l+g

Further use of the method of reference 5 yields equations (B4) and (B5). The stress of

primary interest is
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ay(x,0)= _2P _ Pml (-1)mm=0 x2 - l)I/21x + Cx2_ i)112_2m+l

4K 2_h 2_2h 2 +_ e -2_h .,-_

-_: 1 +_+ + l+g J2m+l(_ ) cos _xu_ (x>l)
31-_ sinh 2_h - 2_h

The ratio of stress intensity factors again is given by equation (B6). In this problem,

the ratio of stress intensity factors depends on /1 because of the clamped-edge condi-

tions. It has been computed for /1 =0 and _=0.5.

The normal stress on an edge of the strip is

cO

4P
ay(x,h) = _Ea(1 + _)2 m--0

_-o 2 cosh_h + (1 + /1)_h sinh _h J2m+l(_) cos _x d_Pm
J0 sinh 2 _h - 2 _h

1+_

This stress is symmetric in x.
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CONVERGENCEPROOFFORAN INFINITE INTEGRAL

The integral to be investigated for convergence at x = 1 is

I(1,h) = _: 2_2h2sinh+ 2_h2Sh+ +12-_ie'2_h J2m+l(_) cos _x d_[x=l

where h is real and positive. Let the integral be written as

.I(1,h) = H(_,h) J2m÷l(() cos _ d_

The function I-I((,h) is a positive steadily decreasing function, for all

interval 0 < _ < _. It is well-known that

}J2m+l(_)} <I

and

so that

(m=0, 1, 2, .)

Assume that the integral

exists.

(CI)

h > 0, in the

(m = o, 1, 2, . . .) (c2)

Ic°s }1 =<1 (C3)

J2m+l(}) cos 41 < 1 (C4)

_0_°H(_,h) d_

Ifthe integral (C5) exists,so does the integral

(C5)

_[ H(_,h)IJ2m+l(_)COS _ld_ (C6)

which follows from a simple comparison test for infinite integrals (see ref. 9, p. 71), by

virtue of the inequality (C4). By use of a theorem on absolute convergence of infinite

integrals (see ref. 9), it further follows that the integral

cO

_0 H(},h) J2m+l(_) cos } d_
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exists, if the integral (C6) exists. Therefore, all that remains for proof of convergence

of equation (C 1) is to prove the convergence of integral (C 5).

Now H(_,h) can be written as

Note that H(_,h) = 1

H(_,h) = 2e-2_h/2_2h2 + 2_h + 1 - e-2_hhl+4_he'2_h- e-4}h /

at _=0. For _> _l, where _1 is the finite (real) root of

(4_h-e-2}h)e-2_h = 0

it is seen that

H(},h) < 2e-2}h(2_2h 2 + 2_h + 1- e-2_h)

It is then permissible to write, for e > 0,

H(_,h) d_ < l+e H(_,h) d} + 2 }1+e e-2_h(2}2h2 + 2_h + 1 - e-2_h) d_ (C7)

Both integrals in the right-hand side of the inequality (C7) are convergent. The first

integral is convergent because H(_,h) contains no singularities, integrable or other-

wise, in the range of integration, and the second integral converges because every term

in the integrand is of negative exponential order. Therefore, the integral (C5) exists,

and the proof is complete.
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